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Quantitative estimates of precision for molecular isotopic

measurements

John P. Jasper*

Molecular Isotope Technologies, LLC, 8 Old Oak Lane, Niantic, CT 06357-1815, USA

Received 5 July 2001; Accepted 5 July 2001

SPONSOR REFEREE: John M. Hayes, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

At least three methods of calculating the random errors or variance of molecular isotopic data are
presently in use. The major components of variance are differentiated and quantified here into least
three to four individual components. The measurement of error of the analyte relative to a working

(whether an internal or an external) standard is quantified via the statistical pooled estimate of error.

A statistical method for calculating the total variance associated with the difference of two

individual isotopic compositions from two isotope laboratories is given, including the variances of

the laboratory (secondary) and working standards, as well as those of the analytes. An abbreviated

method for estimation of of error typical for chromatographic/isotope mass spectrometric methods is
also presented. Copyright © 2001 John Wiley & Sons, Ltd.

Molecular isotopic analysis is now employed or is being
evaluated in a variety of fields —from reconstructing ancient
environmental conditions in organic geochemistry’?
through wide-ranging applications® to isotopic integrity of
pharmaceuticals.* The analytical measurements that under-
pin these applications are of little use without some
quantitative estimate of random errors and understanding
of potential systematic errors. Merritt and Hayes® address in
detail many matters of accuracy and precision in molecular
isotope mass spectrometry. Particular problems of accuracy
discussed include the background correction necessary for
data production and establishment of the non-coelution of
standard peaks. Beyond the problem of peak definition,’
there are at least three to four differentiable sources of
variance that contribute to the total variance in any given
molecular isotopic measurement. In addition, pooled esti-
mates of error derived from large data sets®” permit more
statistically relevant estimates of error than would calcula-
tions made on small numbers of replicates (e.g., 2, 3, 4 data
points). In many practical cases, multiple sets of replicates
(e.g., triplicates) are available. Information from these data
sets can be pooled to provide improved error estimates.
Here, we delineate the major sources of variance that
contribute to the total variance of a given sample and focus
on the pooled estimates of error relevant to the isotopic
measurement of an analyte relative to its proximal (working)
standard. We also point out the existence of systematic,
typically incremental, errors caused by changes of standards,
though this matter is not fully developed here.

*Correspondence to: ]. P. Jasper, Molecular Isotope Technologies
LLC, 8 Old Oak Lane, Niantic, CT 06357-1815, USA.

E-mail: JPJasper@Molecularlsotopes.com

Contract/grant sponsor: N.S.F. Ocean Sciences.
Contract/grant sponsor: N.A.S.A.

DOI:10.1002/ rcm.414

THEORY AND PRACTICE

Estimates of precision: a conceptual
decomposition of variance
The total error (oit) in the isotopic composition of a given
molecular isotopic peak is typically a function of at least
three or four error terms (g; .. ,,) representing the differences
of four or five measured isotopic compositions (Fig. 1).
Isotopic compositions are typically reported relative to that
of a primary standard such as the International Atomic
Energy Authority’'s (IAEA) Vienna PeeDee Belemnite
(VPDB) carbonate standard. A typical secondary standard
used for carbon isotope measurements in many laboratories
is the graphitic National Bureau of Standards-20 standard or
NBS-20. In most molecular isotopic measurements, a CO,(g)
rectangular wave is used as an external standard. The CO, is
injected into the gas stream flowing into the isotope ratio
mass spectrometer (irmMS) and thus appears as another
peak in the chromatogram. Finally, there is the analyte peak
itself whose isotopic composition is defined relative to some
or all of the preceding standards, depending on the use of
external or internal standards.

The error terms (g;, . ) are defined as follows with typical
range compositions given by:

01 = dvppB — ONBs(~0.02%o0)
03 = dnps — Oxs(= 0.01-0.1%0)
03 = dxs — O1s(= 0.1-0.3%o)

04 = 015 — 0a(= 0.10.3%0), and
05 = dxs — Sa (= 0.1-0.3%0)

where §;=the 6"°C of i, and i represents either the VPDB
(primary) standard, the NBS (secondary) standard, an
external standard (XS), an internal standard (IS), or the
analyte (A). For reference, carbon isotopic results are
typically expressed as J-values (parts per thousand differ-
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Figure 1. Diagram of the individual variances (o¢-s) that
constitute the total variance (o1) of a molecular isotopic
measurement. The symbols J; represent the stable carbon
isotopic composition (5'3C) of the primary (e.g., VPDB) standard,
secondary (e.g., NBS) standard, the working [external (XS) or
internal (IS)] standard(s), or the analyte (A). The alternative
variances (o3 4 4 VErsus os) represent alternative pathways for
using different proximal (i.e., internal versus external) standards.
Typically, the variance results are given relative to the proximal
standards.

ences from a standard) defined as:
8"3C(%o) = 1000[(Romp1/Reta) — 1)] (1)

where R = the *C/"?C ratio and the subscripts denote the
sample and the isotopic standard. Most commonly, and
practically in all cases where comparisons between labora-
tories are involved, the standard is VPDB, which defines the
zero point on the 6 scale of carbon isotopic abundances.

Thus, the total error of molecular isotopic measurements
can be expressed as errors added in quadrature in one of the
following ways depending whether or not the internal
standard is employed. In the first case, the internal standard
is employed:

atot(IS) = (012 + 322 + 732 + 042)"° (2)

Using the error ranges given above, typical internal
standard compositions (o(IS)) span from 0.14 to 0.44%o.
Individual compositions may vary depending on analytical
conditions and chromatogram complexity.

In the second case, an internal standard is not used, but an
external standard is:

o1t (XS) = (612 + 022 + 05°)*° 3)

Similar to the preceding case, typical external standard
compositions (g¢t(XS)) span from 0.10 to 0.32%o, with the
same caveats as given for internal standards.

While the total error ranges given above are characteristic
for the preceding formulation of total variance, in many
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cases investigators report only the proximal error estimation
(i.e., the estimation of error relative to either the internal
standard (o) or the external standard (gs)). When compari-
sons between samples are being made, it is only necessary to
track errors back to the nearest common standard. Within a
given laboratory or project, therefore, estimation of either o4
or o5 can be fully adequate. For comparisons between
laboratories or over long intervals of time, gy is usually
pertinent.

Pooled estimates of error: the statistical
constitution of error
The common expression for variance in a data set is

o =2d*/(n-1) (4)

where d is the difference between any given observation and
the mean of all observations and # is the total number of
observations. More generally, when a single procedure has
been used to obtain sets of replicate analyses from multiple
samples, and when ¢ can be assumed to be a characteristic of
the procedure rather than of each sample,® we can write:

O'pz = Zdiz/Z(Tli — 1) (5)

where ¢, refers to a ‘pooled standard deviation” based on i
sets of replicates. In pooling, values of d; the difference
between each observation and its corresponding mean, are
summed across all data sets. The denominator is a summa-
tion of the number of ‘degrees of freedom’, which is equal to
the total number of observations minus the number of
means.

In the present application, we can imagine that four
similar samples have been analyzed using the same method,
sample a in triplicate, b in duplicate, ¢ in quadruplicate, and
sample d only once. Using standard methods, we could
calculate ¢,, o, and o. All would be estimates of the
precision of the same analytical method. Based only on
duplicates, g, would be a poor estimate. Based on four
observations, g. would be a better estimate. We would have
no direct estimate of the error associated with sample d, but
common sense indicates that the precision of its analysis is
related to those of samples a, b, and c. Our best estimate of
the precision of the method would come from pooling.
Following Eqn. (5), we would write:

sz = (dalz + da.22 + da,sz + dbAlz + dbz2
e+ dep? +dog® + des?)/
[(na = 1) + (mp = 1) + (nc — 1)] (6)
where d, 1 is the difference between the first observation of
sample a and the mean value for sample a, etc. The numbers

of replicates in each data set are represented by n,, np...
Equivalently, we could have written:

0p2 = [(1a — 1)oa + (15 — Dop® + (e — 1)oc?]/
[(1a = 1)+ (5 = 1) + (nc = 1) @

This form emphasizes that ¢, is, in effect, a weighted-
average standard deviation.

The pooled standard deviation is the best estimate of the
standard deviation of a single analysis. Standard errors to be
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Figure 2. Diagram illustrating the total variance in the isotopic
difference between two samples x and y. The §'3C compositions
(6;) and their 16 standard deviations (o;) are denoted as follows:
dvppe and ayppp represent the primary standard; ds1 and og4
represent one secondary standard (viz., left; e.g., NBS-23); ds»
and o, represent another secondary standard (viz., right); oy,
and o, represent working standards; and d,, o and dy, gy
represent a first and second sample (see text). All of the
intermediate variance terms (a;) contribute to the total variance,
given by A”6. Note that the working standards (w1, w2) may each
represent either one external standard or an external-plus-an-
internal standard as illustrated in Figure 1 and described in the
text. Equations describing the total (line a) and abbreviated (line
b) variances (given in the text) allow practical estimations of
variance from each construction.

associated with the various mean values can be computed
from it. In this example, we would report standard errors of
0o/ V3, 0p/\/2, 0p/ /4, and oy, for the mean analytical results
for samples a, b, ¢, and d.

In a typical isotopic calculation, results are reported in
terms of § vs the VPDB standard. Nevertheless, the pooled
standard deviation calculated as outlined above is based
only on variations relative to the standard used to calibrate
the ¢ scale in the actual analysis. It is, therefore, an estimate
only of either g4 or gs.

Total variance between two isotopic
compositions

When isotopic compositions of samples are to be compared
between laboratories or, even within a single laboratory,
over long periods of time, the nearest common standard will
probably be VPDB. In that case, the relationships between
the analytical results are summarized graphically by line a in
Fig. 2. The variance in A (where A = 6, — d,) will be given by:

0a? = 0.2 + 0vw1® + 051% + 0% + ow2® + 0y 8)
where the g, terms refer to the calibrations of the working
(internal or external) standards in each laboratory or
procedure and the og terms refer to the calibrations of the
secondary standards. Secondary standards are often well
calibrated (e.g., 0.02-0.03%."). Values of o, depend on
procedures used in individual laboratories. Since standards
are analyzed more carefully than routine samples, we can
expect o1 < 0y and oy, < gy. If procedures used for the
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analyses of x and y are similar, so that g, ~ oy, we can then
replace o, and o, with a single error term (o) and
summarize the result of these considerations as:

opr < 20m 9)

An abbreviated solution for chromatography/
isotope mass spectrometry

For the cases of gas or liquid chromatographic/isotope mass
spectrometric methods, the total variance can be estimated in
an abbreviated, yet very precise, method by accumulating
the individual variances of specific compounds (s, oy) and
their respective standards (o1, 0w2), as indicated by line b in
Fig. 2. The variances of the primary and secondary standards
are ignored because this estimation of error focuses on the
differential isotopic measurements between working stan-
dards and analytes. Thus, spanning from the isotopic
composition of sample x to that of sample y (A" = 65 — dy)
directly via the internal standards w1l and w2, the total
variance (c45°) is given by:

gA,,éz =62 + Owi? + 0w + 0y2 (10)

In the preceding examples, since little variance (0.0004) is
associated with the secondary (or laboratory) standard, its
exclusion makes relatively little difference in estimation of
the total error (ga~s): 0.15%0 —0.14%0 = 0.01%o.

A note on systematic errors

The two most typical kinds of systematic errors associated
with isotope ratio-monitoring/ GCMS are incomplete chro-
matographic resolution of compound peaks (coelution) and
incomplete combustion. Coelution can result in varying
degrees of mixing between the isotopic compositions of the
relevant peaks. Four means by which to resolve coelution
observed under a given set of analytical conditions are to: (i)
chemically remove the problematic peak by preparative
techniques (e.g., hydrolyze an ester?), (ii) chemically alter the
peak of interest, thus changing its retention into another non-
problematic region of the chromatogram, (iii) replace the
chromatographic column with another with different reten-
tion properties, or (iv) when physical or chemical techniques
do not effect peak separation, apply statistical techniques
that may deconvolute the mass and isotopic coelution of
peaks.” Incomplete (or partial) combustion of organic
material can isotopically fractionate it, giving anomalous
isotopic results. Comparison of the observed isotopic
compositions with known standard compositions will
obviate this problem.

Systematic errors caused by the use of either internal
standard compounds or of external standard gases are
largely a function of the long-term availability of the
standard and of the stability of the irmMS over the duration
of data collection. When long-term (e.g., many-year) pre-
cision is required for large data sets, internal standard
compounds with structural characteristics similar to those of
the analytes are used to insure that standard and analytes
undergo as nearly similar conditions of separation, combus-
tion, and mass spectral analysis as possible.” For extended
studies where high data quality (low variance) is required,
systematic errors caused by the long-term intrinsic quality of
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standards (viz., continuity) may typically become an issue.
For example, an investigator should consider how many
tanks of external standard CO, gas or milligrams of internal
standard compound will be consumed during the course of
the study and how much error will be introduced into the
data with changes of standard materials. Such questions
should be considered in the planning stage of long-term
molecular isotopic studies, such as those of paleoceano-
graphic time-series® or of isotopic product integrity.*

To minimize systematic errors in studies of long duration,
a choice has to be made as to whether the analytes” working
standard should be an internal standard compound or an
external standard gas. This choice is largely dependent on
the long-term compositional stability of the standard relative
to the duration of the study. If an external standard CO, gas
is suitably invariant during the course of the study, it should
be used. If there are concerns about the stability of the
external standard gas or the chromatographic or combustion
steps of the analysis over the course of the study, then one
should rely on internal standard compounds to minimize
variance.

SUMMARY

For molecular isotopic data to be quantitatively useful, they
must have meaningful estimates of random errors or
variance. While in many cases only the proximal sources of
variance are reported (i.e., the isotopic compositions versus
the working standard), there are as many as four to five
individual significant contributions to the variance in any
given isotopic measurement. Those sources of variance are
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explicitly described here. There are two main frames of
reference for molecular-isotopic data: within a given
laboratory or between laboratories. In the first case, the
uncertainty reflects only variations relative to a local
standard. In the second, the uncertainty must reflect
variations all the way back to whatever standard has been
shared between the laboratories. In both cases, assessment of
the uncertainties requires that the standard deviation of
replicate analyses be reported. The best estimate of that
standard deviation can often be obtained by pooling
observations from the analyses of multiple samples.
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